

الأكالزميية العربية للعظوف والتكف لوخيا والنق النج رئ

Arab Academy for Science, Technology & Maritime Transport



## 2016 MATE Regional ROV Competition

## **TORBINI ROV TEAM**

2016 Technical Documentation Alexandria, Egypt



### Torbini's ROV: Dolphin

| Name                    | Role                          | Major,<br>Semester                              | Name                               | Role                                | Major,<br>Semester                              |
|-------------------------|-------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------|-------------------------------------------------|
| Yousef Awad             | Chief Mechanical              | Mechatronics<br>Major, 10th<br>Semester         | Ahmed<br>Abdulfattah               | CADD Designer                       | Mechatronics<br>Major, 4 <sup>th</sup> Semester |
| Mohab Eweda             | Co-Pilot                      | Electrical Major,<br>10 <sup>th</sup> Semester  | Ahmed El-Faham                     | Mechanical engineer                 | Mechatronics<br>Major, 5 <sup>th</sup> Semester |
| Hussien Roshdy          | Software engineer             | Computer Major,<br>10th Semester                | Taher Nazeh                        | Mechanical engineer                 | Mechatronics<br>Major, 8 <sup>th</sup> Semester |
| Ziad Mostafa            | CEO, Pilot                    | Electrical Major,<br>10 <sup>th</sup> Semester  | Mahmoud Badra                      | Mechanical engineer,<br>Design Lead | Mechatronics<br>Major, 8 <sup>th</sup> Semester |
| Omar Badra              | Tether man and Safety officer | Mechatronics<br>Major,3 <sup>rd</sup> Semester  | Eng. Ahmed Ramy                    | Mentor                              | Rov pilot/tech                                  |
| Abdulrahman<br>Aboud    | Payload manger                | Mechatronics<br>Major, 8 <sup>th</sup> semester | Eng.Mohamed<br>Elbana              | Team support                        | Mechanical<br>Engineer                          |
| Mohamed Hassan          | R&D and Mechanical engineer   | Mechatronics<br>Major, 8 <sup>th</sup> Semester | Eng.<br>Abdulrahman<br>Abouelkhair | Team support                        | Mechatronics<br>Engineer                        |
| Abdulaziz<br>Abdulghany | Payload manager               | Mechatronics<br>Major, 4 <sup>th</sup> Semester | Eng.Mai<br>Faramawy                | Team support                        | Electronics<br>Engineer                         |

# I. <u>Abstract</u>



Dolphin ROV is our company's fully functional product resulting from eight months of hard work. NASA and the Oceaneering Space Systems (OSS) are in need of a first-of-its-kind dual purpose remotely operated vehicle so Dolphin ROV will play a huge role in the field. It is designed specifically to operate in the harsh environment of both the deep ocean and outer space. Main features of Dolphin ROV are its ability to operate in the ocean under the ice sheet of Jupiter's moon Europa to collect data and deploy instrumentation as well as operating in the Gulf of Mexico to retrieve equipment, collect, analyze and photograph samples.

Dolphin ROV relies on six thrusters: Four thrusters in vertex position for horizontal movement and two for vertical movement. It is also equipped with one main gripper and three cameras.

Power and motion electronics were assembled and modified carefully and our software was developed and coded from scratch via Arduino software allowing the user swift correction of any fault. Furthermore, the ROV's design enables adding or removing any extra hardware or required software.

Safety is our company's main priority so for example fuses and safety labels have been added, control box is removable in order to fix any problem as soon as it happens and our electronics system ensures preventing current from increasing drastically.

This report will take you through the design and construction process and modifications done after the previous year, as well as expenses, safety considerations and future improvements.



#### From Left to Right:

1<sup>st</sup>Row: Yousef Awad, Mohab Eweda, Hussien Roushdy, Ziad Mostafa, Omar Badra, Abulrahman Aboud, Muhammad Hassan, Abdulaziz Abdulghany

2<sup>nd</sup> Row : Ahmed Muhammad Abdulfattah, Ahmed Elfaham, Taher Nazeh, Mahmoud Badra, Eng. Ahmed Ramy, Eng. Mohamed Elbana, Eng. Abdulrahman Abouelkhair, Eng. Mai Faramawy.

## **Table of Contents**



| I.       | Abstract2                                         |
|----------|---------------------------------------------------|
| П.       | Design Rationale4                                 |
| A.       | Design Process and Evolution:                     |
|          | 1. Mechanical Design Process:                     |
|          | 2. Design Evolution:                              |
| В.       | Mechanical System                                 |
|          | I. Frame5<br>3. Thrusters                         |
|          | 4. Electronic Enclosures                          |
|          | 5. Buoyancy                                       |
|          | 5. Manipulator                                    |
| С.       | Electrical and Control System                     |
|          | I. System Integration Diagram (SID)               |
|          | 2. Electrical System                              |
|          | 2.1. Tether                                       |
|          | 2.2. Power Regulation                             |
|          | 2.3. Power Distribution                           |
|          | 3. Control System                                 |
|          | 3.2. Software                                     |
|          | 3.3. Communication                                |
|          | 4. Cameras                                        |
|          | 5. Mission-Specific Tools                         |
| Ш.       | Mission Strategy12                                |
| IV.      | Safety                                            |
| V.       | Cost Analysis14                                   |
| VI.      | Project Costing14                                 |
| VII      | Teamwork and Project Management15                 |
| VII      | 1. Challenges                                     |
| IX.      | Troubleshooting17                                 |
| Х.       | Future Improvements                               |
| XI.      | Lessons Learned                                   |
| XII      | Team Reflections                                  |
| XII      | . References                                      |
| XIV      | 7. Acknowledgments                                |
| XV<br>A. | Appendices                                        |
| A.<br>B. | Safety Checklist:                                 |
| С.       | Dolphin ROV SolidWorks <sup>TM</sup> Design Views |



# II. Design Rationale

## A. Design Process and Evolution:

### **1. Mechanical Design Process:**

The ROV's designing process went through several stages. Firstly, the company's design team made some brainstorming sessions in order to come up with as many ideas as possible. Few sketches were made before settling on the final design of Dolphin. Upon designing Dolphin, several factors were considered such as cost, stability, complexity, ease of manufacturing and motion flexibility under water. The mechanical team was keen on building an ROV which is capable of accomplishing the tasks requested by the customer. The designs that were sketched complied with the size and weight limitations and sketches for the manipulator considered the minimum and the maximum size of the objects that would be held by it. A 3D model was then made using Computer-Aided Design and Drafting (CADD) to validate the concepts. The design was also modelled using SolidWorks<sup>™</sup> and SolidWorks<sup>™</sup> flow simulation to test it under real conditions and to make the required modifications. Finally, the design was prepared for machining by being converted into Drawing Exchange Format (DXF) files for the CNC mill. The design team was keen to finish the designing process in the least time possible to allow enough time for testing, troubleshooting and piloting.

### 2. Design Evolution:

The company believes in continuous development, therefore the company's design team is keen to improve and refine Dolphin over years. Although Dolphin has been stable since the company first built it, there was always a room for improvement. Torbini's latest version of Dolphin is lighter in weight, easier to maneuver and smaller in size. That was due to this year's tasks that limit size and weight. The previous versions of Dolphin also proved to the design team that the Seabotix® thrusters were more efficient in the vertical motion but they were not needed in the horizontal motion. Thus, this year bilge pump thrusters are used for horizontal motion and Seabotix® thrusters are used for vertical motion.

## **B. Mechanical System**



### 1. Frame

The mechanical team decided to design the body in multi-stages, starting with simple sketches on paper (Figure 1) to a very detailed design using Computer-Aided Design and Drafting (CADD). *Dolphin's* frame is designed for optimum functionality with curved edges which provide smooth motion underwater as the curved edges decrease drag force imposed on the vehicle's body, therefore increasing the thrust efficiency. Weighing 1.5Kg, Dolphin's frame is lightweight and compact in size in order to minimize NASA's expenses of launching payloads per kilogram.

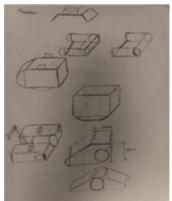



Figure 1: First Sketches of ROV

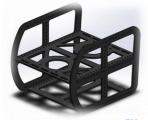



Figure 2: Solid Works<sup>™</sup> Frame Design

Polyethylene was the selected material after comparing it to other materials such as aluminum, stainless steel and acrylic. Polyethylene was chosen as it is easy to cut, robust, lightweight, non-corrosive and act as a shock absorber. The body frame consists of four parts: one squared sheet with two holes for the two vertical thrusters and the two control enclosures, one bottom squared sheet for the gripper and two curved sidewalls which hold the two squared sheets together (Figures 2,3). Polyethylene sheets were purchased and

the final exact measurements of dimensions were handed to the Industry Service Complex at the Arab Academy campus to reshape the polyethylene sheets into our design.

As time is an important factor, the polyethylene sheets were cut using Computer Numerical Control (CNC) machine instead of cutting it manually, producing smooth frame with no sharp edges to facilitate the movement of the vehicle in deep water.

#### 3. Thrusters

The propulsion system consists of six thrusters: two for the vertical motion and four for the horizontal motion allowing five degrees of freedom. Two Seabotix™ BTD150 thrusters were used and mounted in the holes of the upper sheet of the body between the two electronics enclosures allowing the vehicle to heave and pitch. Each Seabotix™ thruster operates at 19.1 VDC with a maximum current 4.25A. (Figure 3)



Figure 3: Seabotix<sup>®</sup> thrusters





Figure 4: Modified Bilge Pump Thruster Four Johnson<sup>™</sup> modified bilge pumps are used as thrusters and positioned at 45° degrees allowing the vehicle to surge, yaw and sway. The bilge pump has a flow rate of 1250 GPH (Gallons per Hour), 12V DC at 3 AMP, 5 AMP fuse and power of 36 Watt. The decision of using the bilge pump was upon calculating the drag that acts on the body of Dolphin by assuming it has a submarine shape and calculating

the power needed which is equal to 11 Watt after being multiplied by safety power factor, finding that the bilge pump power is suitable for the motion of the vehicle.(Figure 4)



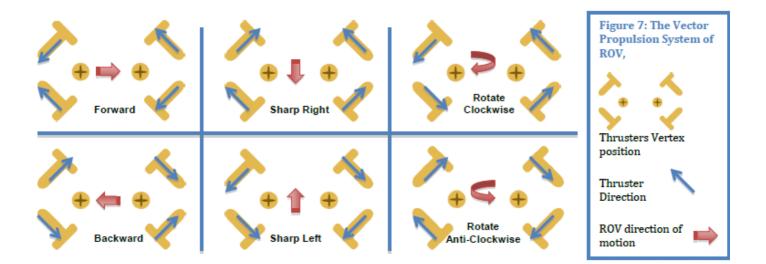

Figure 5: Selection Propeller Graph



Figure 6: Propeller

The company has reused previous year's thrusters, seeing

that there was no need of buying new ones, as they were all tested finding that their condition and efficiency are still the same as when they were first purchased.



### 4. Electronic Enclosures

This year, the mechanical team decided to reduce the vehicle's weight to meet this year's weight limitation by using acrylic instead of polyethylene as a material of the enclosures. Unlike last year, the mechanical team divided the components of the electronic enclosure into two enclosures. The dimensions of both acrylic tubes are 25 cm length, 12 cm outer diameter and 11 cm inner diameter (Figure 8). The electronic enclosures are tightly sealed with two polyethylene end caps. Each cap has two O-rings incorporated in it, sustaining complete sealing.



Figure 8: Enclosure SolidWorks<sup>TM</sup>



### 5. Buoyancy

Dolphin is equipped with buoyancy package specifically designed to balance its residual buoyancy and give the ROV positive buoyancy. The mechanical team decided to start with the neutral buoyancy equation to calculate the buoyancy and dimensions of the buoyancy package. These calculations were made using Solid Works monotones of the mechanical team was highly concerned with the vehicle dynamics, time and effort were saved in troubleshooting weight distribution and buoyancy. Previously, buoyancy was not given a high priority by the company but this year all calculations were made first and then the ROV was tested to ensure that it returns slowly to the water surface even in the case of thruster failure.

### 6. Manipulator

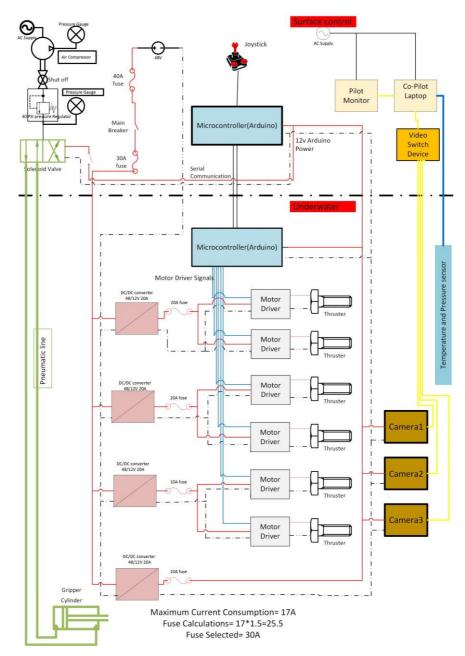
Dolphin's manipulator is a polyethylene claw shaped manipulator which is powered by a single pneumatic piston (figure 9). The motion of the piston is pushing up the links with 5 cm which determines the degree of opening of the gripper. The piston and manipulator are fixed in the lower polyethylene squared sheet of the body.

The mechanical team designed the Grippers According to theory of Grip Strength (GS):

Grip force= part weight x (1+part GS) x jaw style factor.

Grip torque= Grip force x jaw length.

This manipulator is capable of accomplishing all the required tasks such as inserting the temperature sensor into the venting fluid in Europa's mission and connecting the ESP to the power and communication hub. The manipulator will also be used in collecting coral samples and oil mats samples, installing a flange to the top of the wellhead and recovering the mission-critical CubeSats.




**Figure 9: Gripper** 



## C. Electrical and Control System

### 1. System Integration Diagram (SID)



### 2. Electrical System

### 2.1. Tether

Dolphin ROV's tether is 30 metres in length consisting of two 1.5 mm 30A power cable, a 4 core data cable, two cores for serial communication to transmit data from Arduino Mega ADK microcontroller board on shore and Arduino Mega ADK microcontroller board inside the electronic enclosure of the ROV and two cores for powering the cameras and the solenoid valve, and three camera cables. Data and power cables are made of stranded copper wires instead of TTL (Transistor-Transistor Logic) wires for much more powerful signal transmission. In addition, tether contain a two 8 mm hoses for pneumatic cylinder to transfer the pressurized air from the compressor on shore to the pneumatic cylinder attached to the ROV through the solenoid valve.

### 2.2. Power Regulation

Two types of DC-DC Converters are used in *Dolphin*:

- One DC-DC 48V to 24V (20A) Step down Buck Converter with its own safety fuse. Used to supply Seabotix motor drivers (figure 10).
- Three DC-DC 48V to 12V (20A) Step Down Buck Converter two of them are used to supply Bilge pump thrusters and the other one is used to power Cameras, LED light system, Arduino ADK Microcontroller Board and solenoid valve.



Figure 10: DC-DC Converter used for control

#### **2.3. Power Distribution**

In order to avoid any mistake in connections and reduce the number of wires inside the power enclosure, power received from the DC-DC converter passes through a distribution board which in turn distributes the power to the six motor drivers, Solenoid valve, Arduino and cameras. The six motor drivers are connected via six connectors with safety 10A fuse for each motor driver.

| Unit                                      | Current<br>(A) | Volt (v) | Power/<br>Unit | Quantity | Max Power<br>(W) |
|-------------------------------------------|----------------|----------|----------------|----------|------------------|
| Thrusters<br>(bilge pumps)                | 8              | 12       | 96             | 4        | 384              |
| Thrusters<br>(Seabotix)                   | 4.5            | 24       | 93.1           | 2        | 216              |
| Solenoid Valve                            | 0.2            | 12       | 2.4            | 1        | 2.4              |
| Arduino                                   | 0.75           | 12       | 9              | 2        | 18               |
| Cameras                                   | 2              | 12       | 24             | 3        | 72               |
| Peak Power Available (14.425A * 48V)692.4 |                |          |                |          |                  |

This Table shows power needed to operate Dolphin ROV:

#### **Table 1: Power Needed**

### 3. Control System

#### **3.1. Motor Drivers**

6 Motor drivers (Figure 11) are connected to the DC converter. These drivers are of type MOT- D-1015 and dimension 7.5 cm\*4.3 cm. They are capable of driving high current DC motors up to 10A continuous and 15A peak current at motor start.

These drivers support both locked-anti phase and signmagnitude Pulse Width Modulation (PWM) signal as well as using full solid state components resulting in faster response time and eliminating the wear and tear of the mechanical relay, in addition to supporting motor voltage ranges from 3V to 25V and no heat sink is required. Just



Figure 11: H-Bridge

like the DC converter it is easy to fabricate motor drivers but this was also going to be timeconsuming and the cost would be approximately equal to the purchased ones. The rarely used technique of PWM soft start was applied here to prevent current from reaching about 6 times the normal operation at the start of motor operation.



This table shows the H-bridges PWM Technique output power percentage, at ROV full power operation:

|        |                     |             | Dolph<br>Thrus |            | or Drive | ers  |      |      |     |      |      |   |   |   |      |      |      |      |
|--------|---------------------|-------------|----------------|------------|----------|------|------|------|-----|------|------|---|---|---|------|------|------|------|
|        |                     |             | 1              | 2          | 3        | 4    | 5    | 6    | 7   | 8    |      |   |   |   |      |      |      |      |
|        |                     | Forward     | 100            | -100       | 100      | -100 | 0    | 0    | 0   | 0    |      |   |   |   |      |      |      |      |
|        | _                   | Backward    | -100           | 100        | -100     | 100  | 0    | 0    | 0   | 0    |      |   |   |   |      |      |      |      |
| on     | nta                 | Lateral R   | 100            | 100        | -100     | -100 | 0    | 0    | 0   | 0    |      |   |   |   |      |      |      |      |
| Motion | orizoı              | Horizonta   | Lateral L      | -100       | -100     | 100  | 100  | 0    | 0   | 0    | 0    |   |   |   |      |      |      |      |
| 2      |                     |             | Rotating R     | 100        | -100     | -100 | 100  | 0    | 0   | 0    | 0    |   |   |   |      |      |      |      |
| ROV    | Н                   | Rotating L  | -100           | 100        | 100      | -100 | 0    | 0    | 0   | 0    |      |   |   |   |      |      |      |      |
|        | -                   | UP          | 0              | 0          | 0        | 0    | 100  | 100  | 100 | 100  |      |   |   |   |      |      |      |      |
| hir    | Dolphin<br>Vertical | ertica      | ca             | <u>ica</u> | ca       | ica  | ica  | ica  | ica | Down | 0    | 0 | 0 | 0 | -100 | -100 | -100 | -100 |
| dlo    |                     |             | Pitching F.    | 0          | 0        | 0    | 0    | 100  | 100 | -100 | -100 |   |   |   |      |      |      |      |
| Δ      | >                   | Pitching B. | 0              | 0          | 0        | 0    | -100 | -100 | 100 | 100  |      |   |   |   |      |      |      |      |

Table 2: PWM Output

#### 3.2. Software

Dolphin ROV software is simple but effective; it consists of two main parts; the base-station software at the pilot side and the on-board underwater software. Base-station software uses input from a joystick the Logitech Extreme 3D Pro Joystick (Figure 12), written with open source available Arduino software.

On-board electronics consist mainly of an Arduino Mega ADK board. This exact brand of Arduino microcontroller was chosen although it was expensive compared to its counterparts as it has a powerful processor ATMega 2560and it features an ATmega8U2 programmed as a USB-to-serial converter.

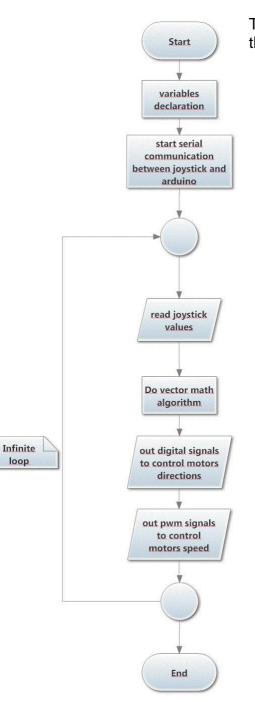



Figure 12: Logitech 3D Pro Joystick

Its length and width are 10.2 cm and 5.3cm respectively operating at 7-12 input voltages and DC current of 40 mA having 54 Digital I/O pins, 15 of which provide PWM (pulse width modulation) output, and 16 Analog input pins and equipped with a boot-loader to upload new code to it without the use of external hardware programmer.

### Software Layout:





This table that shows the impact of a full-scale deflection of the joystick:

|                         |                | Joystick i | nput (full d | eflection) |
|-------------------------|----------------|------------|--------------|------------|
|                         |                | Х          | Y            | Z          |
| ۽ ڇ                     | Forward        | 512        | 612          | 128        |
| ROV<br>Motion           | Backward       | 512        | 0            | 128        |
| al C                    | Lateral Right  | 612        | 512          | 128        |
| Dolphin<br>Horizontal I | Lateral Left   | 0          | 512          | 128        |
|                         | Rotating Right | 512        | 512          | 260        |
| Δĭ                      | Rotating Left  | 512        | 512          | 0          |

**Table 3: Joystick Readings** 

#### 3.3. Communication

According to our believe in continuous evolution, this year Torbini Company decided to use a new method of communication between the joystick and the ROV under water. It is a kind of serial communication called "UART communication" which uses two Arduino<sup>™</sup> Mega ADK boards, one of them is located on the shore connected to the joystick. It takes the signal which consists of bytes and sends it to the other Arduino™ Mega ADK board which is located inside the ROV. The one which is inside the ROV receives these bytes and starts to analyze them, then it moves the signal as instructions to the H-Bridge motor drivers to implement the instructions and control the motors.

#### 4. Cameras

Dolphin is equipped with 3 waterproof fish finder underwater cameras. The main camera is positioned to view the gripper, the second to view the object held by the gripper and the last camera is positioned at the back of the ROV to view a wide area of the pool to aid the pilot in finding specific tasks underwater. The cameras have builtin LEDs to help the pilot to perform the required tasks in dim light.

### 5. Mission-Specific Tools

#### Pressure and Temperature sensor

To be able to determine the thickness of the ice and the depth of the ocean in mission to Europa's task, The Bar30 pressure sensor is attached to Dolphin. The sensor is already waterproofed, which saved the company the time to isolate it. This sensor also includes a temperature sensor accurate to ±1°C to enable the ROV to measure the temperature of the venting fluid.

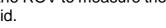







Figure 13: Arduino<sup>™</sup> Mega ADK board



**Figure 14: Fish finder Camera** 



**Figure 15: Pressure Sensor** 

#### The collecting box

This year's missions require that several items are collected and carried to the shore. Therefore, due to the depth of the NBL pool, a collecting box was made to ease the missions for the pilot. Instead of ascending and descending the 12 meter pool several times, the pilot can collect all items that should be gathered in the box and ascend to shore only a single time saving time and energy.

#### **Mission Strategy** Ш.

In order to perform the mission in the least time possible, the pilot and co-pilot developed a mission strategy. First, they will descend the collecting box on to the pool floor, then they will start collecting the oil samples and the coral samples. While collecting the samples the co-pilot will photograph the corals and determine its state. The pilot will then take the box back to the shore





using the manipulator. After that, the tether man will attach the pressure sensor to Dolphin and will deliver the oil samples to the co-pilot in order to identify it. The pilot will then measure the temperature of the venting fluid, then measure the thickness of the ice and the depth of the ocean. The pilot will then collect the cubeSats and then connect the ESP to the power and communication hub. Finally, the pilot will install the flange, bolts and the wellhead cap to the top of the wellhead and retrieve the ROV to the surface.

# IV. <u>Safety</u>

Safety is more important than convenience, therefore Torbini is extremely concerned with the safety and health of its employees. The company's workshop and ROV comply with all safety regulations



Figure 17: Safety equipment

stipulated by Oceaneering HSE handbook and OSHA regulations. A safety officer is always present in workplaces ensuring that employees are following safety precautions while doing their jobs. The officer also uses the company's



Figure 16: Following Workplace Safety



Figure 18: Kort nozzles

safety checklist daily to conduct routine inspections (refer to appendix A.) Furthermore, the safety officer is responsible for investigating accidents to prevent them from occurring in the future. Safety is not only limited to the workplace but also to Dolphin itself. These are some of Dolphin's safety features:

- Safety electrical labels on vehicle.
- Kort nozzles surround each propeller (Figure 18).
- Heat shrinks used on welded wires (Figure 19).
- No Sharp edges.
- Curved and rounded edged frame.
- Housing is made from acrylic which is non-conducting
- Fuse board-withstanding 10A inserted before each motor drivers.
- LED indicators on the Arduino shield.
- A high sensitivity water detection sensor module is used to detect liquid leakage.



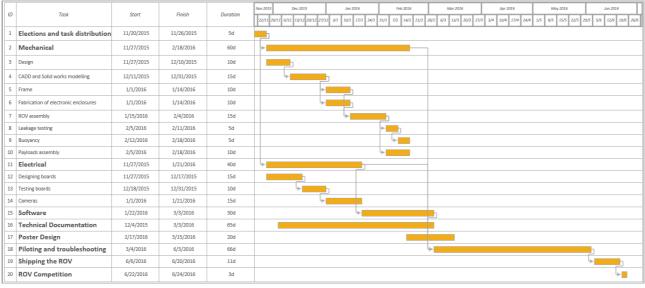
Figure 19: ROV Cables, in heat shrink

# TORBINI ROV TEAM

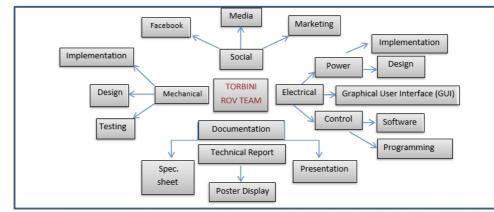
# V. Cost Analysis

Before starting to build Dolphin, the company's CFO conducted a CBA (cost-benefit analysis) and a detailed estimated budget (see appendix B) for the project. The CFO considered re-using some components to reduce the overall cost as the company's budget was limited. After referring to the mechanical department to ensure that the thrusters and the propellers are in a suitable condition, the company decided to re-use them as they were all in perfect condition and buying new thruster would have been an unnecessary cost. The pilot has also checked the condition of the joystick and it was functioning properly, so the company was not obligated to buy a new one. Some other electrical components were also re-used after consulting the electrical department which confirmed that these components were in a good condition to be used again without reducing Dolphin's efficiency. The CFO also ensured that the new components purchased are up to our company's quality standards with a suitable cost.

# VI. Project Costing


| Sponsor:  |              |             | hnology and Maritime (Torbini)<br>hnology and Maritime |                                 | Reporting period                                                           | From:<br>To: |                |
|-----------|--------------|-------------|--------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|--------------|----------------|
| Date      | Туре         | Category    | Expense                                                | Description                     | Notes                                                                      | Amount       | Running Balanc |
| 1/20/2016 | Purchased    |             | Body frame                                             | Polyethylene material           | The material needed for building the body frame                            | -100         |                |
| 1/25/2016 | Purchased    | Service     | Vehicle body frame                                     | Polyethylene frame              | Machining cost                                                             | -50          |                |
| 1/25/2016 | Re-used      |             | DC/DC converter                                        | SD-500L-12                      | 3X 48V/12V 20A                                                             | -120         |                |
| 1/25/2016 | Re-used      | Electronics | DC/DC converter                                        | SD-500L-24                      | 1X 48V/24V 20A                                                             | -40          | -3             |
| 1/25/2016 | Re-used      | Electronics | Joystick                                               | Logitech                        | Logitech extreme 3D pro                                                    | -90          | -40            |
| 1/25/2016 | Re-used      | Electronics | DC motor drivers                                       | 6 motor drivers                 | 10A rating current                                                         | -100         | -50            |
| 1/25/2016 | Donated      |             | Electrical tools                                       | Donated by AASTMT               | Soldering iron, glue gun, driller and cutter machine                       | -170         |                |
| 1/25/2016 | Re-used      | Electronics | Control unit                                           | Arduino <sup>™</sup> Mega ADK   | 2 Arduino Used as a control unit of the vehicle                            | -80          | -7             |
| 1/25/2016 | Re-used      |             | Arduino shield                                         | Signal distribution board       | Used for distributing the signal to the motor drivers                      | -6           | -7             |
| 1/30/2016 | Purchased    | Electrical  | Cables                                                 | Electrical cables               | 30 meters power cable + 5 meters power cable for inner wiring              | -20          |                |
| 1/30/2016 | Purchased    | Hardware    | Cable                                                  | 4 cores control cable           | 30 meters cable for the communication between the two Arduinos             | -15          |                |
| 2/1/2016  | Purchased    | Electronics | PCB                                                    | PCB, Connectors                 | Used for supplying the motor drivers with power                            | -5           | -79            |
| 2/7/2016  | Re-used      | Mechanica   | Thrusters                                              | SeaBotix <sup>®</sup> thrusters | 2 SeaBotix <sup>e</sup> thrusters                                          | -1400        | -219           |
| 2/7/2016  | Re-used      |             | Bilge pumps                                            | Johnson <sup>®</sup> Pumps      | 4 modified bilge pumps used as thrusters                                   | -160         | -23            |
| 2/7/2016  | Re-used      |             | Propellers                                             | 3 blades propellers             | 4 propellers                                                               | -22          | -23            |
| 2/20/2016 | Purchased    |             | Thruster holders                                       | Stainless steel holders         | Used for fixing thrusters on the vehicle                                   | -9           |                |
| 2/20/2016 | Purchased    |             | Tie wraps                                              | Plastic tie wraps pack          | Used for tying up the inner wirings inside the enclosure                   | -2           |                |
| 2/27/2016 | Purchased    | Hardware    | Stainless steel screws                                 | 50 screws                       | Used for assembling the body frame parts together                          | -3           | -23            |
| 2/27/2016 | Purchased    | Hardware    | Stainless steel nuts                                   | 50 nuts                         | Used for assembling the body frame parts together                          | -3           | -239           |
| 2/27/2016 | Purchased    |             | Cable gallands                                         | 6 gallands                      | Sealed gallands used for conneting the tether to the control enclosure     | -20          |                |
| 2/27/2016 | Purchased    | Hardware    | Scotchcast                                             | 3 packs of schothcast           | Used for sealing purposes                                                  | -70          | -248           |
| 2/27/2016 | Purchased    |             | Polyethylene                                           | Cylindrical polyethyelene       |                                                                            | -25          | -251           |
| 2/27/2016 | Purchased    | Service     | Machining                                              | Control Enclosure machining     |                                                                            | -15          | -252           |
| 2/27/2016 | Purchased    | Hardware    | O-Ring                                                 | Rubber O-Ring                   | Used for Sealing the control enclosure                                     | -2           | -252           |
| 3/10/2016 | Purchased    | Sensor      | Video Cameras                                          | 3 Cameras                       | 3 fish finder cameras                                                      | -350         | -287           |
| 3/10/2016 | Purchased    | Electronics | ION Video 2 PC <sup>™</sup>                            |                                 | Video to PC converter                                                      | -50          |                |
| 3/10/2016 | Purchased    | Hardware    | Epoxy                                                  | 10 packs of epoxy               |                                                                            | -15          | -294           |
| 3/26/2016 | Re-used      | Electronics | Controlled A/V selector                                |                                 | Used for having a full view of all vehicle cameras and selecting a specifi | -40          | -298           |
| 3/26/2016 | Donated      | Electronics |                                                        | Samsung <sup>e</sup> laptop     | Donated by one of the team's memebers                                      | -600         | -358           |
| 3/26/2016 | Purchased    |             | Pressure and temperature sensor                        | Bluerobotics®                   | Used for taking pressure and temperature measurments                       | -60          |                |
| 3/26/2016 | Donated      | Electronics | External monitor                                       | LCD monitor                     | Donated by AASTMT                                                          | -65          |                |
| 4/1/2016  | Purchased    |             | Air compressor                                         | Air compressor                  | 30L air compressoe                                                         | -140         |                |
| 4/1/2016  | purchased    |             | Air pressure regulator                                 | Air pressure regulator          | Used for regulating the pressure at 40 PSI                                 | -7           |                |
| 4/7/2016  | Purchased    |             | Pneumatic Piston                                       | 1 pneumatic cylinder            | Used for the gripper                                                       | -10          |                |
| 4/7/2016  | Purchased    |             | Pneumatic line                                         | 40 meter pneumatic line         | used for                                                                   | -8           |                |
| 4/7/2016  | Purchased    |             | Pneumatic solenoid valve                               | 1 Pneumatic solenoid valve      | Used for controlling the pneumatic piston                                  | -40          |                |
| 4/15/2016 | Purchased    | General     | Technical documentation                                |                                 | Hard copy of the technical documentation                                   | -10          |                |
| 4/15/2016 | Purchased    | General     | Marketing Pisplay                                      |                                 | Printing the poster                                                        | -30          |                |
| 4/15/2016 | Purchased    | General     | Team's member T-shirts                                 | 15 T-shirts                     | Team member's Uniform                                                      | -170         | -412           |
| 5/19/2016 | Purchased    | General     | Air fare for team members                              | 6 Tickets                       | 6 round and trip airfare (\$850 each) donated by AASTMT                    | -5100        | -922           |
| 5/19/2016 | Purchased    | General     | Air fare for team members                              | 3 Tickets                       | 3 round and trip airfare (\$850 each) donated by ATCO PHARMA               | -2550        | -1177          |
| 5/27/2016 | Purchased    | General     | Accomodation                                           | 9 Members                       | The estimate cost of the accomodation for the team members                 | -3500        | -152           |
| 6/1/2016  | Cash donated | General     | Fund                                                   | Funds donated by AASTMT         | Used for general vehicle construction and travelling affairs               | 16000        | 72             |
|           |              | 1           |                                                        |                                 |                                                                            | Total Raised | 1600           |
|           |              |             |                                                        |                                 |                                                                            | Total Spent  | -152           |
|           |              |             |                                                        |                                 |                                                                            | rotal spent  | -152           |




# VII. Teamwork and Project Management

Dolphin is the product of the hard work of each member of the company as the cooperation between the employees of Torbini has led to this fruitful outcome. Elections were made at the very first meeting to choose a CEO and then a full company hierarchy was made by designating a role to each member. The CEO made a general time plan and each department was assigned tasks. Consequently, each department head assigned tasks to the employees and put deadlines according to the time plan. The technical report and the poster, although only the technical writing director was in charge of them, each department have written and sent their sections to ease the work of the technical writing director.

Weekly, a general meeting is held for department heads to report the progress of the week. In addition, every department held its own meeting for members to report the progress of their specific assignments and to ensure that everything is still on schedule. Occasionally there were delays and straying from the schedule but by the motivation of our CEO everyone managed to finish the work within the set time frame. To set an effective and efficient time plan, the company used Gantt chart (Figure 20), Critical path method (CPM) and Program Evaluation and Review Technique (PERT) to guide their decisions regarding resources and time. The company also employed a heavy usage of flowcharts and networks to plan and coordinate activities. Figure 21 shows the Torbini team assignments diagram.











## VIII. <u>Challenges</u>

### A. Technical Challenges:

As a company which believes in innovation, Torbini always encourage its employees to get out of their comfort zone and to try new methods and techniques instead of the guaranteed traditional techniques. Accordingly, the employees encounter some technical challenges while working.

#### • Electronic enclosure

The mechanical team decided to use acrylic instead of polyethylene for the electronic enclosures. As they were not used to this type of material, one of the enclosures was cracked and leaked water. Having limited time to make a new enclosure as this type of material was not present in Alexandria and the mechanical engineers had to travel to be able to manufacture a new one, the mechanical team decided to manufacture a polyethylene enclosure instead.

#### • Pneumatic

Our mechanical team had a very little experience with the pneumatic systems since the company has always used a motor and screw motion in controlling the motion of the gripper. Therefore, the mechanical team faced some challenges in their attempts to make a successful pneumatic manipulator. First, the mechanical team had to read about pneumatic systems to gain enough knowledge to build one. And after few trials, the team was able to build a functioning pneumatic manipulator.

### **B. Non-Technical Challenges:**

Beside the technical challenges, our company also faced some non-technical challenges. One of the major challenges that we have encountered was that the lab that we used to work in was unavailable and our college could not provide us with another place to work in. Thus, the work was delayed for a while until one of our mentors offered to give us an empty apartment to work in. Another challenge was that most of our company members are graduating this year and they were busy in their graduation projects and had a very limited time to work in. Consequently, new members had to adjust their daily schedule to comply with the graduates' schedule and tasks were redistributed so we can be able to finish our product on time.





Although each part of the ROV was separately tested and the ROV was tested after integrating all of its parts, Torbini has encountered several problems in the process of building

Dolphin. These situations were handled through the company's troubleshooting and problem solving techniques shown in figure (22).

A problem that the company faced was that in one of our product testing, two motors stopped working. The pilot then retrieved the ROV, and the team began the troubleshooting process. After making several short-circuit tests, the company's electrical engineers identified the problem which was that a ground wire of one of the DC converters was cut. As the regional competition was after almost a week, the solution of replacing this wire was almost impossible as that would mean that the company would make a new endcap for the enclosures that would be isolated and tested again within less than a week. Hence, other

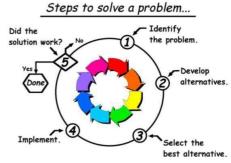



Figure 22: Our methodology of problem solving, courtesy ofwww.thecollaboratory.wikidot.com

alternatives were considered, and the electrical team settled on powering these two motor from another DC converter, the converter which powers the Arduino. After trying the system with the new modifications, the pilot discovered that when he operates these two motors, the everything stops and he has to restart the whole system for everything to start functioning again. Since the applied solution did not accomplish the job effectively, other alternatives were considered again and the electrical team connected the two motors with the ground of another DC converter as they all have common ground and the Arduino was again connected to a separate DC converter. The pilot the tested the modified system and no other problems were detected.

# X. Future Improvements

Our company believes that there is always a way to do it better, thus, although our ROV is stable and efficient there are some future improvements that the company is willing to apply in the coming years.

1) As a result of carrying heavy objects, Dolphin can sometimes have an undesirable tilt. Since Dolphin has an open-loop control system and it gives no feedback, this tilt could not be detected and thus could not be avoided. As a future improvement, our team is willing to make a closed-loop control system instead by putting sensors such as: compass, gyro and accelerometer to monitor the motion of the ROV. Hence, the team could automatically prevent the ROV to tilt while carrying heavy objects and auto-stabilization could be applied if the pilot wanted to stay in a certain depth for a certain period of time. Also, our team is willing to use motors which can give a feedback in order to use PID control to reduce the errors in the thrusters and to increase the efficiency of the whole system. This will ease the job of the pilot in performing any task our future customers will request. (closed-loop diagram)

2) Another future improvement is replacing traditional copper cables with Fiber-optic cables to transmit information over a much larger distance and with a much higher bit rate. Digitized information is placed onto light pulses for transmission using a laser and travels along the glass fiber at the speed of light. This will allow us to receive and transmit data faster which will increase the efficiency of the vehicle for our future customers. (fiber optic cable)

# XI. Lessons Learned



## A. Technical lessons learned:

In an attempt to improve the overall efficiency of our ROV, the mechanical department implemented a new mechanism for Dolphin's manipulator. For the first time in their career, the company's mechanical team had to build a pneumatic manipulator. As they were not acquainted with pneumatic systems, they had learnt a lot from this experience. From learning about the mechanism to knowing all safety precautions needed, the team was eager to gather all possible information about pneumatic systems to be able to apply it effectively.

### **B.** Interpersonal Lessons:

While building Dolphin, our team gained some interpersonal skills beside the technical ones. The experienced member did not only pass their technical knowledge but also their organizational and problem solving skills to the new members. Our tight time plan in building Dolphin forced us to manage our time more professionally to be able to balance between our studies and the ROV work. Furthermore, sudden problems taught us how to think for solutions together without panicking in critical times. This project has also enhanced our presentation and technical writing skills.

# XII. <u>Team Reflections</u>



"This is the first time I participate in a serious project. Thanks to that I've learnt much more new information about mechanics, learnt how to design mechanical components, electrical isolation and also motion and buoyancy calculations. The most important thing that I consider as an addition to me is teamwork. We have changed from being strangers with one unifying passion for ROV to a family of 12. This has brought us closer and had helped us to overcome the challenges."

"As far as your dream goes the earth will get bigger so I consider that being a member of Torbini Company a year ago to be one of the most rewarding experiences in which I have ever participated and also it is the first step towards my targets. Following my curiosity and wish for something new I chose circuit engineering as my field of study. As a senior member in the team, just having a working ROV and achieving average results at the competition will not be enough for me. I thought a lot and set new goals for the upcoming competitions on the individual level, hoping that the goal would grow on a team level. "



# XIII. <u>References</u>



- 1. Harry Bohm and VickiJensen (1997) "Build your own under
  - (1997) "Build your own underwater Robot and other wet projects".
- 2. Robert D-Christ and Robert L.WerlniSR (2007)"The ROV Manual: A User Guide for Observation Class Remotely Operated Vehicles".
- 3. MATE Marine Advanced Technology Education "www.marinetech.org"
- 4. http://www.marinetech.org/underwater-robotics-textbook-2/
- 5. Oceaneering Americas Region HSE Employee Handbook

# XIV. Acknowledgments

We would like to thank the following organizations and individuals:

- **AAST** (Arab Academy for Science, Technology and Maritime Transport) for the financial support, hosting the local competition and allowing us to use the pool for ROV testing.
- ATCO PHARMA for providing the company three travelling tickets.
- Prof.Dr.Ossama Ismail for mentoring and providing technical support.
- **Dr. Ahmed Elshenawy** for facilitating the working environment and co-coordinating our logistical issues.
- **Dr.Rania Assem** for providing us with a fund to aid in building the ROV
- Engineer Mohammed Fouad for providing engineering consultations and for providing us the Mechanical work shop.
- Industry Service Complex at AAST for being such a great machining resource
- MATE Center for organizing the international competition and bringing together so many
- competitors and organizations in one think tank.
- Hadath organization for helping and organizing the regional competition.
- Our mentors Engineer Ahmed Ramy, Engineer Mohamed El Bana, Engineer Abdelrahman Aboulkheir and Engineer Mai Faramawy for their continuous help and support.
- Noran Mohamed for her spectacular efforts in the technical documentation











# XV. <u>Appendices</u>

## A. Safety Checklist:

Date of Inspection: / / Time of Inspection:

|    | Workplace Safety                                                                                                    |  |
|----|---------------------------------------------------------------------------------------------------------------------|--|
| 1  | No loose or entangled wires                                                                                         |  |
| 2  | Electrical Equipment tested prior to usage                                                                          |  |
| 3  | People working with electrical equipment have been given proper training                                            |  |
| 4  | All power points, light fittings and switches in a safe place                                                       |  |
| 5  | Staff are using safety goggles                                                                                      |  |
| 6  | Medicine cabinet is adequately filled with all necessary first aid kit                                              |  |
| 7  | All exit routes free from obstacles, including furniture and electrical equipment                                   |  |
| 8  | All Team members have been given full instructions and training in escape and assembly points, and fire precautions |  |
| 9  | All team members wearing life jackets on pool                                                                       |  |
| 10 | Appropriate shoes are worn on pool                                                                                  |  |

|   | ROV Safety                   |  |
|---|------------------------------|--|
| 1 | Safety Labels                |  |
| 2 | Propeller Kort nozzles fixed |  |
| 3 | Fuses in place               |  |
| 4 | Connections are secure       |  |
| 5 | No leakage                   |  |
| 6 | No live wires                |  |
| 7 | No sharp edges               |  |

Safety Manager: Signature



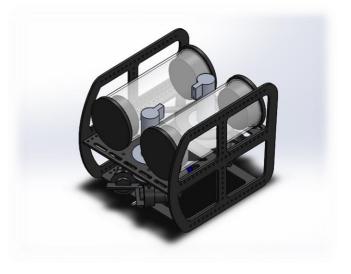
## B. Budget


|            | Required itmes          | Total (USD) |
|------------|-------------------------|-------------|
|            | Electrical Tools        | 300.00      |
|            | Motor drivers           | 3960.00     |
|            | Control unit            | 80.00       |
| al         | Thrusters               | 1560.00     |
| Electrica  | DC/DC Converters        | 160.00      |
| lect       | Joystick                | 90.00       |
| ш          | Cameras                 | 350.00      |
|            | Sensors                 | 60.00       |
|            | Tether                  | 50.00       |
|            | Electronics components  | 100.00      |
|            | Enclosure               | 150.00      |
| _          | Buyouncy foam           | 5.00        |
| Mechanical | Sealing Tools           | 10.00       |
| har        | O-ring                  | 10.00       |
| Лес        | polyethylene sheets     | 100.00      |
| 2          | Hand tools              | 50.00       |
|            | Machining/CNC/Drilling  | 50.00       |
| ugs        | Technical Documentation | 10.00       |
| Printin    | Marketing display       | 30.00       |
| Pri        | T-shirts                | 170.00      |
| Travelling | Aifare to Houston       | 7350.00     |
| Trave      | Accomodation and meals  | 3500.00     |
|            | Total                   | 18145.00    |



## C. Dolphin ROV SolidWorks<sup>™</sup> Design Views




**3D assembly Top View** 



**3D assembly Side View** 



**3D assembly Back View** 



**3D assembly Front View**