EXPLORER FLIGHT DATA EXAMPLE SAND POINT

Take-off: Naval Air Station Sand Point Heading: $182^{\circ}(\mathrm{T})$

Airspeed ascent: $84 \mathrm{~m} / \mathrm{s}$
Ascent rate: 15.6 m/s
Time until engine failure: 1 minute, 3 seconds
Airspeed descent: $61 \mathrm{~m} / \mathrm{s}$
Descent rate: $5.4 \mathrm{~m} / \mathrm{s}$
Wind direction: From $168^{\circ}(\mathrm{T})$
Wind speed $=-(1 / 720) t^{2}+25$, where t is seconds after engine failure

Note: Wind only affects the aircraft after engine failure as prior to engine failure the pilot compensates for the wind speed and direction.

EXPLORER FLIGHT DATA EXAMPLE RENTON

Take-off: Renton Airfield
Heading: $340^{\circ}(\mathrm{T})$
Airspeed ascent: $98 \mathrm{~m} / \mathrm{s}$
Ascent rate: $10.8 \mathrm{~m} / \mathrm{s}$
Time until engine failure: 75 seconds
Airspeed descent: $60 \mathrm{~m} / \mathrm{s}$
Descent rate: $8.0 \mathrm{~m} / \mathrm{s}$
Wind direction: From 350° (T)
Wind speed $=-(1 / 720) t^{2}+25$, where t is seconds after engine failure

Note: Wind only affects the aircraft after engine failure as prior to engine failure the pilot compensates for the wind speed and direction.

ANSWERS BELOW

Answer Key - EXAMPLE Sand Point

Take-off: Naval Air Station Sand Point
Heading: 182° (T)
Airspeed ascent: $84 \mathrm{~m} / \mathrm{s}$
Ascent rate: $15.6 \mathrm{~m} / \mathrm{s}$
Time until engine failure: 1 minute, 3 seconds
Airspeed descent: $61 \mathrm{~m} / \mathrm{s}$
Descent rate: 5.4 m/s
Wind direction: From $168^{\circ}(\mathrm{T})$
Wind speed: equation given, they integrate it to find total
motion due to wind (i.e., position) $=-(1 /(720 * 3)) t^{3}+25 t$

Calculations:

Note: $X=$ east/west motion, positive east; $Y=$ north/south, positive north
Ascent: 983 m altitude,
Ascent motion: $\mathrm{X}=-185 \mathrm{~m}, \mathrm{Y}=-5289 \mathrm{~m}$
Descent: 182 sec
Descent (w/o wind): $X=-387 \mathrm{~m}, \mathrm{Y}=-11,095 \mathrm{~m}$
Descent from wind: $X=-366, Y=1721$
Total XY: $X=-938 \mathrm{~m}, \mathrm{Y}=-14,663 \mathrm{~m}$;
Total answer $=14,693 \mathrm{~m} @ 183.66^{\circ}(\mathrm{T})$

Answer Key - EXAMPLE RENTON

Take-off: Renton Airfield
Heading: 340° (T)
Airspeed ascent: $98 \mathrm{~m} / \mathrm{s}$
Ascent rate: $10.8 \mathrm{~m} / \mathrm{s}$
Time until engine failure: 75 seconds
Airspeed descent: $60 \mathrm{~m} / \mathrm{s}$
Descent rate: $8.0 \mathrm{~m} / \mathrm{s}$
Wind direction: From 350° (T)
Wind speed: equation given, they integrate it to find total
motion due to wind (i.e., position) $=-(1 /(720 * 3)) t^{3}+25 t$

Calculations:

Note: $X=$ east/west motion, positive east; $Y=$ north/south, positive north Ascent: 810 m altitude,
Ascent motion: $\mathrm{X}=-2514 \mathrm{~m}, \mathrm{Y}=6907$
Descent: 101 sec
Descent (w/o wind): $X=-2078 m, Y=5709 \mathrm{~m}$
Descent from wind: $X=356, Y=-2020$
Total XY: $\mathrm{X}=-4236 \mathrm{~m}, \mathrm{Y}=10,596 \mathrm{~m}$;
Total answer = 11,411 m @ $338.21^{\circ}(\mathrm{T})$

