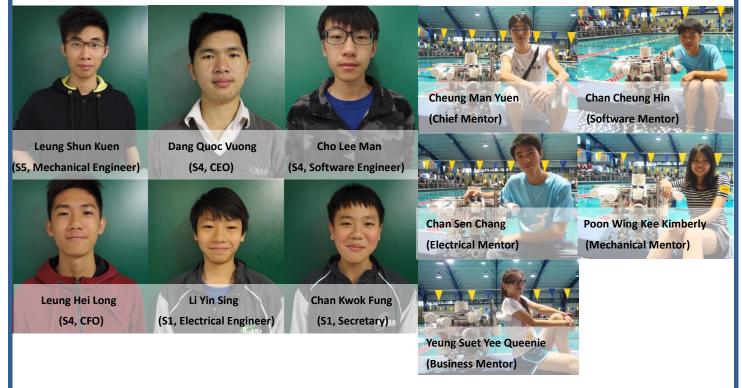

The 12th Annual MATE International ROV Competition

Company Name: CMA Underwater Expert Ltd.

School Name: CMA Secondary School (Hong Kong, China)


Club Name: Design and Applied Technology Club

ROV Name: Beta【佩珊號】

Team Members

Consultant Team

Abstract

This is the second times for our company to join the MATE ROV International Competition.

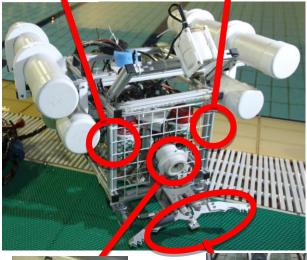
We are CMA Underwater Expert Ltd. and specialize in creating robotic offshore and intervention systems for shallow water to ultra-deep sea applications. Our company designs and manufactures autonomous and remote-controlled unmanned underwater vehicles, remote-controlled electric and manipulator arms, and inspection TV cameras for subsea intervention offshore in past five years. We have created a Remotely Operated Vehicle (ROV), named **Beta**. The 2013 Marine Advanced Technology Education (MATE) ROV competition focuses on launching a new era of ocean science & discovery. **Beta** was created to perform a variety of tasks including: completing a node and installing an instrument on the seafloor, using a temperature sensor to measure temperature over time in a hydrothermal vent opening, replacing an Acoustic Doppler Current Profiler (ADCP) on a mid-water column mooring platform and removing bio-fouling within the observatory. The CMA Underwater Expert Ltd. is committed to delivering a reliable product and responding to underwater emergencies with professionalism and expertise.

Beta has the approximate dimensions of 79cm x 68.5cm x 49.5cm and is weighted 19kg. It has a multi-functional manipulator, a temperature sensor, eight thrusters (four for horizontal movement and four for vertical movement) and three cameras, these aspects maximize functionality, thrust, and angles of viewing. We put four Electronic Speed Control boxes (ESC) inside **Beta** for driving motors and two monitor signal collection box.

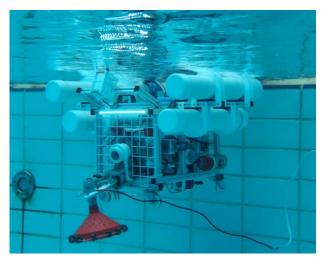
Last Year MATE contest

Table of Contents

Title Page	1
Abstract	2
Photos of ROV	4
Special Feature	4
Budget	6
Electrical Schematic	7
Design Rationale	8
- Design Methodology	8
- Mission Tasks	9
-Frame Feature	10
-Thruster Feature	10
-Underwater Electronic Speed Control Box	11
-Cameras	11
-Controller and Electronics	11
-Tether	12
-Software flow	12
Safety	13
Vehicle System	14
Challenges	14
Troubleshooting Technique	14
Payload Description	15
Future Improvement	15
Lesson Learned	16
Reflections	17
Teamwork	18
Acknowledgements	19
References	19
Appendix	20


Photos of Beta

Thruster


Electronic Speed Control Box

110° camera

Remote Operated Vehicle Detail

Special Feature

Modular Frame Design

The frame of **Beta** has two special points. First, the frame is hand made by our group mates and is made of aluminum rods which are strong enough to protect the ROV when it is carrying out the mission. Moreover, the frame can separate into small pieces for convenient transporting.

The frame is separated into different modules. They are motor module, camera module, sensor module, manipulator module. Each module can be removed rapidly and easily.

Waterproofed Electronic Speed Control Box Design

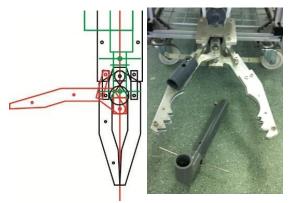
As it is not easy to make the motor drivers get into the water, a waterproof function designed. It is hand made by our group members and is made of acrylic glass and epoxy.

Electronic Speed Control Box Control boxes are made of acrylic glass. There are all together 4 boxes. And all of them have 2 two-way E.S.C. for thrusters. Some of the E.S.C. are used to be spears.

Custom Current Limiter Design

Knowing that the initial work load of the current is increased if turning on the ROV in a deep level of water, and this will cause the blown of fuse. So a current limiter is made. It can limit the current of our ROV. The 12V 25A power source is divided into 2 parts. One is 5A and another is 20A. For the 12V 5A power source, it is connected to three cameras and a controller. For the 12V 20A power source, we would step down it to 7.5V 7A for each motor. It is connected to two 1000w 1 Ω resistors in parallel then to the 6 thrusters.

Reference formula: V=IR


We paralleled two 1Ω resistors. That we can get a 0.5 Ω resister. According to the formula, $12V\div0.5\Omega=24A$. So our limited current is 24A.

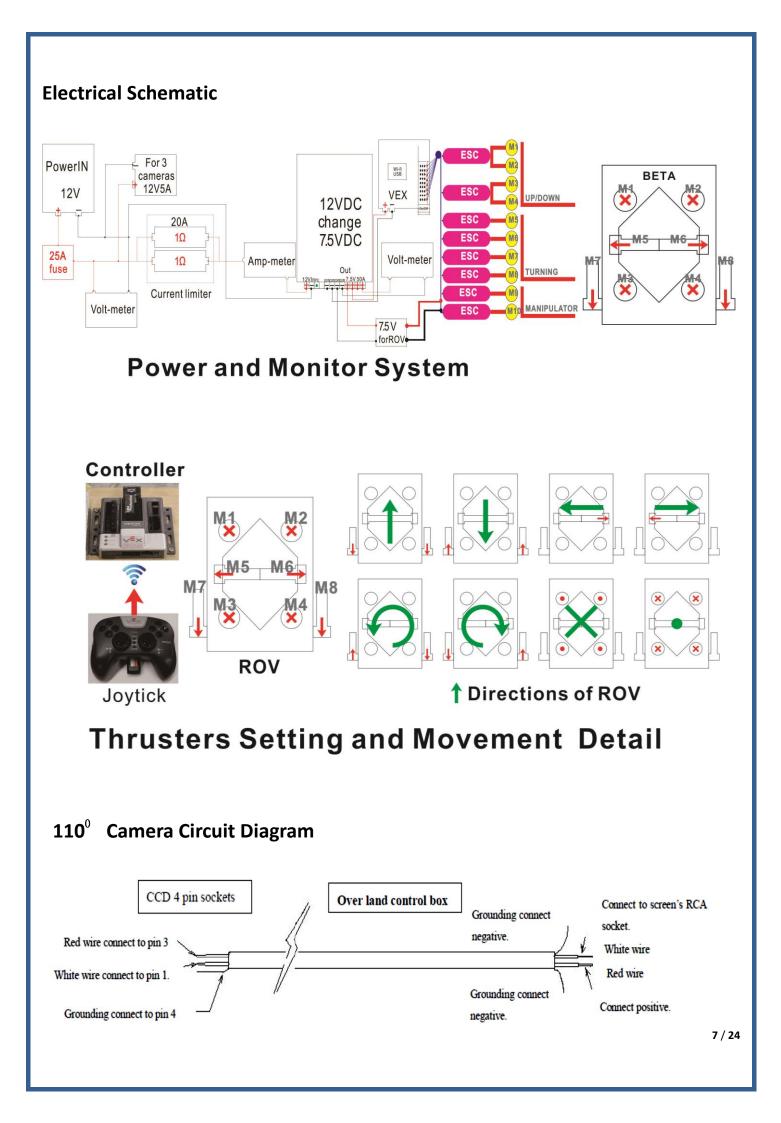
1000W 1 Ω resistors There two resistors inside the box. Both of the resistors are 1000W 1 Ω . They are used to limit the current.

Manipulator Arm Design

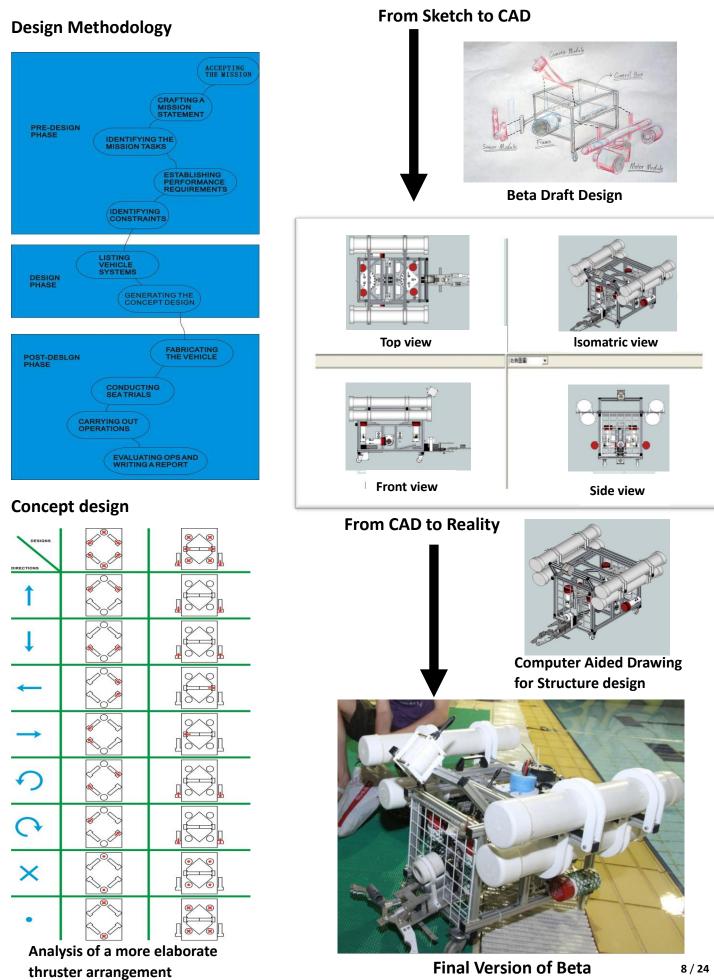
Knowing that in the concerning situation this year, the manipulator is used and important for finish a lot of missions, so we focus on it and test different types of manipulator. At first, VEX's manipulator is used, as we found that it do not have enough force to hold things, a new manipulator which is handmade by our members instead the old one. We modify the manipulator to have 2 dimensions movement. Also, an appurtenance is designed to increased reliability.

Simplified Diagram and Manipulator Detail

The VEX manipulator arm can afford to take the heavy things to the seafloor or pick the tinny things, such as, SIA, a pin, etc. After revised, an optional tool is designed for turning the handle, and picking up the ACDP.


New Design of Manipulator Detail

Budget


2013 Beta Financial Report

	Part	Quantity	Unit	Unit price (HKD\$)	Cost (HKD\$)		
		FRAME			·		
1	2020 Aluminum	10	Meter	25	250		
2	Aluminum joint	30	Ea	5	150		
3	Stainless Steel screws + nuts	1	Ea	300	300		
4	Waterproofed plugs	20	Ea	5	100		
5	Temperature sensor	1	Ea	10	10		
6	EVA mat 30mmX30mmX5mm	1	Ea	20	20		
		Electronics					
7	Vex Basic kit	1	Ea	2000	2000		
8	Electronic speed controller	10	Ea	70	700		
9	1000w 1 Ω resistor	2	Ea	150	300		
10	Fuses	8	Ea	2	16		
		Propulsion					
11	1100GPH bilge pumps	8	Ea	70	560		
12	Propellers	8	Ea	8	64		
Payloads							
13	Geared motor for manipulator	2	Ea	50	100		
14	6mm x 25mm x 500mm aluminum plate	1	Ea	50	50		
15	Cameras	3	Ea	300	900		
Tether							
16	Black and red 10WG	30	Meter	4	120		
17	Black and red 16WG	30	Meter	20	600		
18	Extra Flexible Cat5	30	Meter	10	300		
19	Wire	15	Meter	10	150		
					<u>6,690</u>		

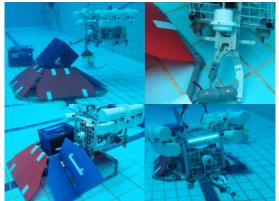
CMA Technology Funding	HKD\$5,000
Public donate (Fair Market Value)	HKD\$1,690
Amount spent	HKD\$6,690
Amount spent	US\$861.97

Design Rationale:

Missions Tasks

Manipulator Arm Functionality

One manipulator arm is used. Besides, there is an additional tool. As there is an appurtenance, the tasks would be done easier by a little movement of the ROV.


For Task 1,

-take the SIA to the seafloor and install the SIA into the BIA.

-insert the CTA into the bulkhead connector on the BIA.

-remove the OBS cable connector from the elevator after pulling the pin to release the OBS and opening the door of the BIA.

-remove the OBS cable connector from elevator and insert it into the bulkhead connector on the SIA.

Mission Task 1 Training

For Task3,

-Disconnect power to the platform.

-Turn the handle to unlock the hatch.

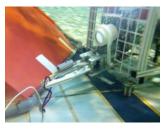
-Open the handle.

-Remove the ADCP from the mooring platform. -Install the new ADCP into the mooring platform.

-Close the hatch.

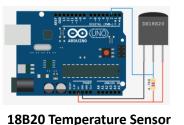
-Turn the handle to lock the hatch.

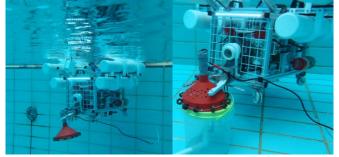
-Reconnect power to the platform.


Mission Task 3 Training

Mission Task 3 Training

For Task4


-locate and remove bio fouling from structures and instruments within the observatory.

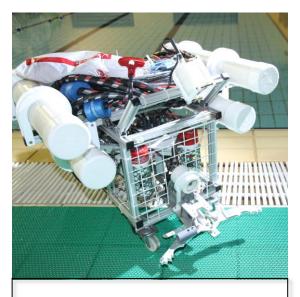

Mission Task 4 Training Temperature Senor

Temperature sensor is used to collect the temperature data over an extended time period. The data would, then, transfer to the Arduino board. Arduino board is used to receive the data and display the temperature value to the number. For Task 2,

- Designing and constructing a temperature sensor prior to the competition
- -Installing the temperature sensor over the vent opening
- -Measuring temperature over time
- -Graphing all five data points (temperature versus time)

Comit Comit
Dallas Temperature IC Control Library 1.0. Miles Burton
#S CMAROV [21.75Dallas Temperature IC Control Library 1.0. Miles Burton
#S CMAROV [21.75]#
Dallas Temperature IC Control Library 1.0. Miles Burton
#S CMAROV [24.93]#
#S CMAROV [26.06]#
#S CMAROV [27.12]#
#S CMAROV [27.87]#
#S CMAROV [28.31]#
Window Terminal

Temperature Sensor Testing


9 / 24

Frame Feature

Beta's frame is composed of 30mm x 30mm entrusted aluminum. Compared to other structural materials, aluminum are chemically simple and it is a popular structural materials for all sorts of things (not just underwater vehicles), because of the hard, stiff, wear-resistant materials that offer excellent can strength-to-weight ratios, yet they can also be cut, drilled, bent, and also fabricated into a wide variety of useful structural components, including beams, plates, bolts, rivets, and even wire rope or cable.

Also, our frame is modular design. That can separate into small pieces. For example, the cameras and motors can be separated from the ROV easily while transporting.

The size of ROV is 75 cm long, 60 cm widen, and 40 cm high.

ROV SIZE 75cm x 60cm x 40cm

Overall weight 12kg

Thruster Feature

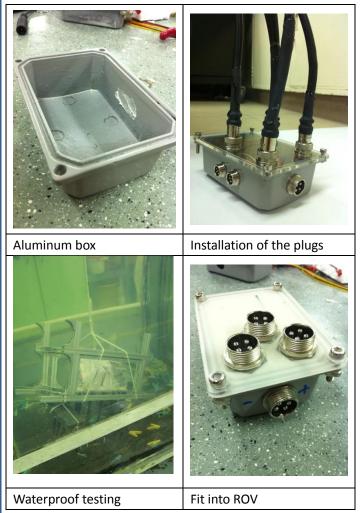
Beta features four vectored horizontal thrusters. These Under-water Thrusters specially designed for ROV with high efficiency, large thrust, small size, use flexible and easy to control of features.

 Meet the 50m water depth work environment.
The 50mm diameter 2 blades ducted propeller provides thrust 720g.

3. Control propeller rotating direction can effectively provide thrust of forward or reverse.

Underwater Thruster

Electronic Speed Controller


We used the MOSFET type electronic speed controller (ESC) in **Beta**.

For general, a single channel is able to control one actuator or one thruster on the ROV. Therefore, a deeper diving hybrid with four thrusters would need a transmitter and corresponding receiver with a minimum of four channels.

Electronic Speed Controller (ESC)

Underwater Electronic Control Box

Our control box was made of aluminum box. It is waterproofed. ESC is built inside, they are used to control motors.

Cameras

We used 3 cameras to investigate the surrounding.(one camera for observation; one camera for top observation, and one for observeing manipulator operation.)

Camera Specification

Waterproofed 420 wire, 110 degree wide angle camera, focus could be preset, focus distance from 300 mm to infinity, could work under 20 meters, video cable could be over 50

meters(over 70 Ω). Voltage: 12V DC Current: 0.5A

Controller and Electronics

VEX controllers have been adapted to operate the **Beta**. The **Beta** is developed by Underwater Expert, uses 2 VEX controllers to control 8 electronic speed controllers. This control system consists of two joysticks with Wi-Fi transmitter units and compatible receiver units. Eight electric speed controllers separated by two groups, which resides on the waterproof bow in the ROV. The software code is designed by our members. Also, it has a good command of the software flow because we used a graphical programmer to write control codes. Moreover, electrical power system was placed the fuse on the positive side of the main power system because this is a safety protection of it.

One set of VEX controllers for Beta

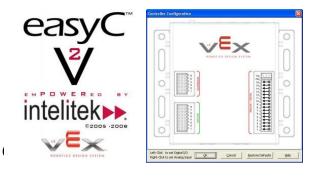
We used one VEX controller to control 8 electronic speed controllers. This control system consist of two joysticks with Wi-Fi transmitter units and compatible receiver units. The VEX controllers are programmable, and the programme is designed by our company. It helps to control easier and made the design become more flexible. It would easily accommodate future expansions of ROV subsystems, such as a manipulator or a camera tilt mechanism. The ROV's thrusters require high rate of power of delivery in short time periods. Typically, the

thrusters that power pull currents in excess of 7.5V 6A and the total power consumption for thrusters is 180 Watt.

Tether

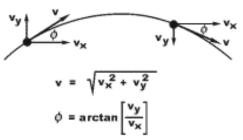
The tether consists of two 8 AWG power cables, three coaxial cables for cameras, two CAT-5 cables for the ESC's signal, one signal cable for portable fish finder and one 1mm wire for tether protection.

The Length of tether cable - 15 m

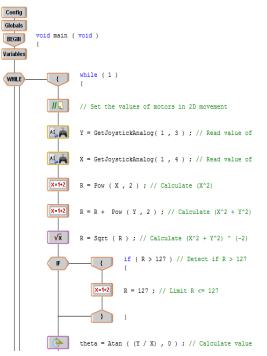

Diameter - 20 mm Weight - 2 kg

Power Budget for the ROV

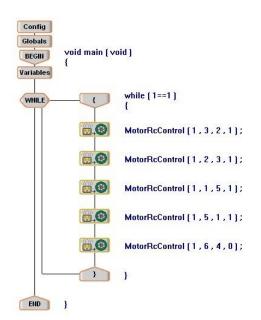
Device	Current	Power per	Total power
	per device	device	
8 Thruster	7.5V 6A	45 watts	360 watts
2 Motor	7.5V 2A	15 watts	30 watts
3 Camera	12V 0.5A	6 watts	18 watts
Total	-	-	408watts


Software flow

We have a good command of software flow because we used a graphical programmer to write control codes. Using VEX Wi-Fi control system; we used the "Easy C" software to write the program. It was GUI program software so we could write the program by graphic.

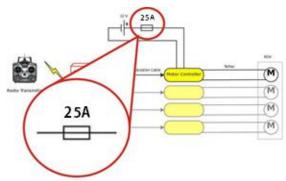


Thruster's control


The analogue joystick readings naturally come back in cartesian coordinates.

PROGRAMMING - Rectangular coordinates to Polar coordinates conversion

Manipulator arm control


Safety

CMA Underwater Expert Company is focusing on safety issues. When we design and develop the ROV, ensure that it does not contain sharp edges, expose the cable to outside and carry the cover of the thruster.

Safety feature

- Cable joint tidy
- Steel wire for prevent tether's tension stress
- Clearly labeled moving parts
- Aluminum frame do not sharp edges
- Volt-meter and Amp-meter monitor

Power safety

We used a 25-Amp fuse at the beginning part of the circuit to protect the motors. Also all of the wires is clean and neat, no wires or contacts are exposed.

Thrusters' safety

When we choose which type of thrusters is more safety, we decided to choose it already contain the cover of thruster. We think that will increase the safety level than use water pipe and steel mesh cages to cover the propellers.

Moreover, draw some safety marks to prevent any loose or someone who is unlucky and contact them with fingers accidentally.

Safety check list

We made a safety check list for vehicle, electrical and system of pre-drive and post- drive to make sure that check all of the safety details every time before we operate our ROV underwater.

Before put ROV into the water, you <u>MUST</u>:

- 1. make sure no cable exposed to outside.
- 2. Oheak a fuse is present in the vehide's electrical system,

SAFETY CHECKLIST EACH STUDENT, EVERY TIME!

Make sure the work space is well ventilated and well lit

- Each student must wear:
- safety goggles
- close-toed shoes

aprons

Vehicle System

Beta is an original design by our company. Mechanical department is tailor-made design and builds the ROV's frame and gripper.

Electrical department use Arduino controller and 18b20 temperature IC to design and build temperature sensor.

Software department is responsible to write the vehicle control and manipulator arm operation program.

Role of each member

Dang Quoc Vuong is a CEO of our company.

Cho Lee Man is software engineer in charge of software testing and operations.

Li Yin Sing is electrical engineer in charge of electronic system development.

Leung Shun Kuen is mechanical engineer in charge of hardware design and material selection.Chan Kwok Fung is company secretary respond for the writing report.

Leung Hei Long is CAD engineer, sketching CAD model.

All the components and the materials is new in this year. We have not re-use the component and materials from last year. It is because these consumed already. That is the reason why the Beta costs around HK\$20000.

Operating and Control Crew

Typical team members operate **Beta** : > 1 x Pilot > 1 x Technician > 1 x Navigator

Back up technical crew Typical team members operate **Beta** : > 3 x pit crew members

Technical Challenges

As there are some new members, they usually made some wrong decisions when building the ROV. Our team member make a mistake to burn the ESC and mixing a wrong ratio of epoxy, so it cannot be curdled completely, and they need to remove it from the E.S.C. and mixed another glass of epoxy.

To solve this problem, our team member should read the related menu or instruction before they use the electronic device or mix the epoxy.

Lower Water Resistance

By the last years' experience, knowing that a big waterproof box placing in the center of the ROV would cause a high water resistance, so we distribute the big waterproof control box into four waterproof boxes. For the absent of the big waterproof box, our ROV would move faster in a lower power distribution.

Interpersonal challenge

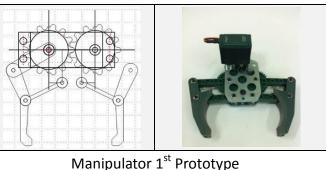
Our team members are come from different form. It is difficult for us to know what the others had done. Also, there are four new members join our team. As we do not know their strength, it is difficult to arrange our works.

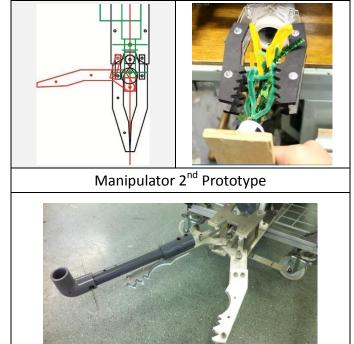
Finally, we know that communication among teammates is very important, so we meet regularly to discuss and plan for the project.

Troubleshooting Technique

Checking the program of control system had spent much of our time. When we finished the program, we tried to control the thrusters at first time. But these thrusters always trembled and we could not control it. We thought maybe the signal wire was too long. So we found a shorter signal wire to try, but it still did not work. Then we checked the program again, we discovered that the program syntax was wrong.

First, we used 16 AWG as the power cable. We found that the voltage drop will become signification. It means that was not enough power to give to the thrusters. So, we used 8 AWG cable to replace the 16 AWG to get enough power.


As for the waterproofed control box problem, there was not enough space for the motor drivers in side. So we built a larger box. Another problem of the box was about waterproofing. Lastly, we used Acrylic glass to build the box by ourselves and we make it successfully.

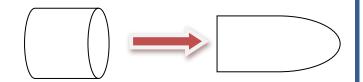

Payload Description

ROV Speed : Horizontal Speed –1m/sec Vertical Speed – 1.3m/sec

Manipulator Arm

Manipulator is the most important for ROV to compete the mission tasks, so we focus on it and must design and build a simple operate and reliable manipulator. We found that the manipulator arm which made by ourselves cannot use for heavy work. After the modification, 2nd prototype manipulator arm is able to take things about 15 kg and clip things more easily. Also, we had waterproofed the motor of VEX's manipulator to prevent the water get into the motor. VEX's manipulator arm is simplified its design and increased reliability. But it cannot turn the handle in task 3, so we make a couple joint to extend a U-bolt to turn the handle.

Manipulator Final Prototype

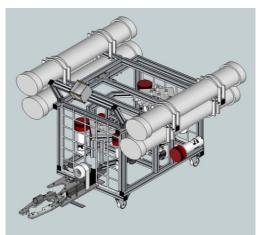

Manipulator Force – 15Kg Manipulator U-Bolt Turning Angle – 0° -90°

Future Improvement

We found that **Beta** move slowly, while going deeper in the water. There are several ways to solve the tasks.

Improve the shape of **Beta** could be designed in streamlined. It can reduce the resistance when the ROV is moving in the water. The ROV can move faster.

We can also use the lighter material to replace the 2020 aluminum. It can solve the weight problem and help us to transport our ROV.



Shape improvement

Lesson Learned

Technical Aspect

- In our design, we use the four vectored horizontal thrusters. The thrusters are arranged with one at each corner pointing diagonally. This can create four pairs of vectored thrusters (one pair in front, one at the back, and one on each side), which can be used alone or in combination to coordinate a truly impressive range of motion. The motors are put in radial shape. It makes our ROV move smoother. But it became a challenge that ROV cannot rotate left and right. So the design has to change. In our second design, the motors are placed in four corners and faced the center of the vehicle. Then the rotation problem solved. If the four horizontal thrusters in the corners have independent speed and direction control, they can be used to move the ROV in any horizontal direction. This is an extremely versatile thrusters arrangement.
- Learned how to use the Sketchup to design the 3D model. Using Sketchup to design our Beta. It spent us one month to draw this graphic.

Beta CAD model

 About buoyancy, learned that ballasts needed to put at a upper level. This can help the ROV become more stable in under water. Weight of displaced water column.

Interpersonal Aspect

- A major lesson we learned this year is time management. Some of the members need to out more time in their study to prepare the public exam. After discussion, we drafted a schedule for our preparation. It makes our project run smoothly.
- By learning from fellow team members, we have grown as a team.
- All the members are important and the whole success depends on everyone's work.

Team spirit: Working hard to achieve goal

Reflections

This is the sixth times for our team to participate in the Hong Kong Underwater Robot Challenge. This is because of how much fun we have had building, designing, testing and eventually competing with ROV that has been created with a great team. Throughout the design and building process, our team logged over a thousand hours and learned a lot about what to do and what not to do while building an ROV. Moreover, sometimes our team had disagreement about the ROV's design or had to troubleshoot its systems. All of the members have always enjoyed all the mechanical and technical things and this competition is the perfect outlet for our creativity. In addition, the past experience has enriched our knowledge and skills about ROV. For instance, we have learned to take the design and build an ROV, how can they use, how to work with certain electronics and how to solder effectively.

Our team has learned many valuable skills this year. Through the competition, we have grown as a team. This experience has taught us that leadership and diligence are very important to us. This kind of experience can enhance my communicate skills and build up team spirit.

From our point of view, we look forward to using the lessons we have learned as we aim to pursue our degree in the field engineering. The experience of competition is invaluable to us. It lets us be more confident and extrovert. We are proud of our work.

Photo of Last Year Hong Kong Ranger Classes and Explore Class in the International Competition

Teamwork

Schedule									
Name	Nove	November		January	February	March	April	May	
Leung Hei Long		Research	Discussion of Ocean Observing Systems	Brainstorm,	Budget	Budg Presentatio Report v	n practice	Redesign poster and	
Chan Kwok Fung		Re	search	Report writing	Report writing,	Presentatio	Poster display resentation practice Report writing		
Dang Quoc Vuong	•		e the safety ecklist	Brainstorm	Temperature sensor	and Arduino	Rebuild came	ameras and wires	
Li Yin Sing	getting to know ROV design	Elec	OV Frame, ctronics, ramming	ROV tool Packages- brainstorm, Controller design	Ballast system, ROV tool packages gripper, ROV tool packages	Flow works, Presentation practice. Touch up ROV, Driving	Manipulator improvement	Redesign poster and prepare the presentatior	
Leung Shun Kuen				ROV tool Packages- sai brainstorm		Technical ir		mprovement	
Cho Lee Man	U	Use Sketc	hup to design	Software and Electrical discussion	ROV tool packages camera	Touch up ROV, Driving	Use AutoCAD to design	Redesign poster and prepare the presentatior	

18 / 24

Acknowledgements

The CMA Secondary School ROV Team would like to thank the following parties and organization for supporting us, allowing the creation of a successful ROV.

Marine Advanced Technology Education Center (MATE), for giving us this grateful opportunity to not only expand our technical knowledge, but also enrich our experience.

City University of Hong Kong and The Hong Kong University of Science And Technology, for hosting the workshops, it makes us to know cleanly about the competition.

Dr. Mak Yiu Kwong, our Principal and CMA Secondary School for the school pool, facilities and financial support.

Ms. Chow Pui Shan, our Golden Sponsor. Mr. Fung Kwok On, Dr. Tse On Ki, our Sliver Sponsors.

Mr. Hung Hing Lun, Mr. Jason Cheung, Mr. Jeffrey Yung, Mr. Lau K C, Dr. Peter Tong, Ir. Peter Wong,

Mr. Victor Cheung, Mr. Albert Lo, Mr. Calvin Tang, Ir. Chang C S, Ms. Eagle Mo, Ms Li To Seung,

Mr. Wong K Y, Mr. Yuen P L, Mr. Cecil Man, our Bronze Sponsors.

Mr. Cheung Man Yeun, our mentor, for being there whenever we needed help (CMASS Technology Innovation Club), for allowing us to use their machines and storage area and donate materials for the competition of the ROV.

Mr. Chan Sen Chang, Mr. Chan Cheung Hin, Ms. Yeung Suet Yee Queenie, Ms. Poon Wing Kee Kimberly, our mentors, for giving advices to help us.

All of our parents and families, for their patience, encouragement and support to our team and project.

References

- Steven W. Moore, Harry Bohm, Vickie Jensen, Underwater Robotics Science, Design & Fabrication, Marine Advanced Technology Education (MATE) Center, Hong Kong, 2010
- Harry Bohm, Vickie Jensen, Build Your Own Underwater Robot and Other Wet Projects, New Man Printing International Co. Ltd., Hong Kong, 2010
- 3. Eddie Norman, Joyce Riley, Syd Urry, Mike Whittaker, Advance Design And Technology, Longman Group UK Limited, 1990

Appendix I

SAFETY CHECKLIST

EACH STUDENT, EVERY TIME!

- Make sure the work space is well ventilated and well lit
 - Each student must wear:
 - safety goggles
 - close-toed shoes
 - aprons

Pre-dive checklist

- A. Vehicle Inspection
- 1. Check thruster shaft seals for oil loss
- 2. Inspect camera port for cracks or signs of condensation
- 3. Inspect/ secure hull end caps for full engagement
- 5. Lubricate and replace camera vent plug
- 6. Inspect/ adjust vehicle position within crash frame

B. Electrical Hook-up

- 1. Check that the main power switch on the console is off
- 2. Remove vehicle and tether connector dummy plugs and store safely
- 3. Bring umbilical OVER hook onto lifting eye
- 4. Protect all unused connectors with dummy plugs
- 5. Mate other end of umbilical to console as labeled
- 6. Ensure the input line voltage matches the setting
- 7. Use a heavy-gauge (14 AWG or less) extension cord to reach the power source
- C. System Checkout
- 1. Ensure that the thruster and light switches are in the off position
- 2. Center trim adjust knob
- 3. Switch on power to control console
- 4. Switch on video on monitor
- 5. Check for video monitor
- 6. Turn thruster switch on
- 7. Briefly toggle joy sticks
- 8. Double-check that all vent plugs are installed. Lower vehicle into water and adjust trim if necessary by adding weights or floats
- 9. Check video picture
- 10. Confirm light operation
- 11. Confirm thruster operation
- 12. Confirm temperature sensor

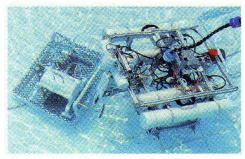
Post-dive checklist

- 1. Inspect camera ports for cracks and condensation. Cover lens ports immediately after drive.
- 2. Check thruster oil filled chambers to ensure no collapsing occurred during drive
- 3. Inspect and rotate thruster shafts to ensure no debris was collected during dive and that shafts are turning freely
- 4. Rinse vehicle down with fresh water
- 5. Remove and replace both vent plugs to equalize pressure
- 6. Secure all equipment to deck
- 7. Once ROV operations are complete, remove all electrical connections. Rinse all exposed plugs and sockets with fresh water. Grease terminals with lubricant and fit dummy plugs on vehicle and tether connectors.
- 8. When ROV operations have been completed, disconnect all cables, install dummy plugs and pack in crate.

Appendix II

Media Outreach

10 youngpost Monday, May 13, 2013


CMA to compete again in ocean robot finals

While the idea of secondary school students building robots for fun may seem like something from a science fiction movie, the pupils at CMA Secondary School showed that this idea isn't so strange after all.

so strange after all. Students from all over Asia took part in the Eighth Hong Kong Underwater Robot Challenge. The event, organised by the Marine

Advanced Technology Education (Mate) Centre, took place at the Tseung Kwan O swimming pool,

CMA's robot in the regional event.

with 25 teams from Hong Kong, Macau, Thailand, Shanghai, India, Indonesia and Singapore taking part. CMA won for the second

year in a row, and will go to the 12th Mate International

Competition, from June 20 to 22, in Seattle, in the United States.

The competition asks top regional qualifiers from all over the world to show off their skills. They have to design and build remote-control vehicles to work in the ocean.

Students also get to take part in Mate programmes, which teach technical skills, problem solving, critical thinking and teamwork.

The Challenge also promotes ocean conservation among young people, asking them to consider how modern technology can be used to help the ocean be a healthier home for animals and plants.

South China Morning Post – Young Post (13rd May, 2013)

Media Outreach

Chinese Technical Press - 機械人之家(June, 2013)

This article was named "Underwater Robot – Conservation of the Marine Ecosystem". Rules of the MATE ROV International Competition, our team's ROV – Beta's special features, our team members' feelings on this competition.